If cosec θ−sin θ=m and sec θ−cos θ=n, prove that
(m2n)23+(mn2)23=1.
Answer:
- Let us first calculate the value of m2n and mn2.
m2n=(cosec θ−sin θ)2.(sec θ−cos θ)=(1sin θ−sin θ)2.(1cos θ−cos θ)=(1−sin2 θ)2sin2 θ.(1−cos2 θ)cos θ=(cos2 θ)2sin2 θ.sin2 θcos θ [∵1−sin2 θ=cos2 θ and 1−cos2 θ=sin2 θ]=cos4 θsin2 θ×sin2 θcos θ=cos3 θ∴ (m2n)13=cos θ …(i) - Now,
mn2=(cosec θ−sin θ).(sec θ−cos θ)2=(1sin θ−sin θ).(1cos θ−cos θ)2=(1−sin2 θ)sin θ.(1−cos2 θ)2cos2 θ=cos2 θsin θ×(sin2 θ)2cos2 θ [∵1−sin θ=cos2 θ and 1−cos2 θ=sin2 θ]=sin3 θ∴ (mn2)13=sin θ …(ii) - On squaring and adding (i) and (ii), we get (m2n)23+(mn2)23=(cos θ)2+(sin θ)2=1 [∵cos2 θ+sin2 θ=1]
- Hence, (m2n)23+(mn2)23=1.