If cosec θsin θ=m and sec θcos θ=n, prove that (m2n)23+(mn2)23=1.


Answer:


Step by Step Explanation:
  1. Let us first calculate the value of m2n and mn2.
    m2n=(cosec θsin θ)2.(sec θcos θ)=(1sin θsin θ)2.(1cos θcos θ)=(1sin2 θ)2sin2 θ.(1cos2 θ)cos θ=(cos2 θ)2sin2 θ.sin2 θcos θ        [1sin2 θ=cos2 θ and 1cos2 θ=sin2 θ]=cos4 θsin2 θ×sin2 θcos θ=cos3 θ   (m2n)13=cos θ                  (i)
  2. Now,
    mn2=(cosec θsin θ).(sec θcos θ)2=(1sin θsin θ).(1cos θcos θ)2=(1sin2 θ)sin θ.(1cos2 θ)2cos2 θ=cos2 θsin θ×(sin2 θ)2cos2 θ        [1sin θ=cos2 θ and 1cos2 θ=sin2 θ]=sin3 θ   (mn2)13=sin θ                  (ii)
  3. On squaring and adding (i) and (ii), we get (m2n)23+(mn2)23=(cos θ)2+(sin θ)2=1          [cos2 θ+sin2 θ=1]
  4. Hence, (m2n)23+(mn2)23=1.

You can reuse this answer
Creative Commons License
whatsapp logo
Chat with us